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ABSTRACT

* Some simple theoretical examples of time series in m dimensions, their main

properties, estimation, and forecasting are given. These are generalizations
of the usual time series to events in both time and space. How these models
may be simulated is explained. One practical example of flooding on the
Mohawk River is given. Included are new results in forecasting; the regions
for permissible values of the autocorrelation and cross correlations; and
methods for obtaining these correlations}

1. INTRODUCTION

The purpose of this paper is to give a short introduction to the main ideasg
of time series in m dimensions. These simple examples are concerned with
results in only one dimension. Full generality to m dimensions is given in
the papers of Aroian and his collaborators. The usual time series is in zero
dimensions. The same methods apply to purely spatial series if time is not a
consideration; spatial series are explored in a forthcoming paper of Aroian
and Gebizlioglu (l). Every event occurs in time and space. An event has
many characteristics; only the univariate case is trested here. For the
multivariate case, see Aroian (2). As examples, if m = 1, note the charac-
teristics of a river, and as a generalization any process involving a flow.
If m = 2, examples are physical processes as a storm, rainfall over a reaion,
the changing physical or social processes over time in a restricted region;
for m = 3, examples are the positions of satellites, sunspots on the sun,
geological processes and earthquakes, storms in space, or characteristics
over an {£,,§,,§,,t) coordinate system. Social, industrial, scientific,
geophysica} a§ wgll as other processes may be explained by these models.

2, ARMA MODEL

The autoregressive moving average model, m = 1, is defined for m = 1, ) ~r,
= 2 by:

z (2.1)

x,t = olzx,t-1+°22x-1,t-l.elax,t-l-eza)'c—l,t—1+°x,t

The characteristic 2z in which one is interested is given as a linear
combination of two p§s§ values of z at (x,t-1) and (x-1,t-1l), r, = 2; and two
past values of a variable a t-1’ 2 ¢-1’ Tandom shocks, with“an error
8y 40 Ty = 2. We assume zxxé il wegiiy s%ationary, E(z }) = 0 (with no loss
r ’ xit
generality), E(zi't)-c:<w, E(zx,tlzy,t )=°5°x~y,t -ty - < X ¢ @, =x <tc o
is an independent random variable “with mean %ero, variance E(zx t.2%x ¢ )
* ’

k) = 0, unless £ = k = 0, when it is o:: and ’x,t is indepfendefit

A, t

E(’x,tax-l,t-
of Zym2,t-k unless & = k = 0,

If 01 = 02 = 0, then

0281, e-1 (2.2)

Zx,t ™ 2,70 0%, 1"
"‘ﬁTsiﬁﬁb’T'r“““ E.
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. = +
(2.3) 2, o= 812 1 00% 1, -1t

8, = =P107P01

(4.1) z = a

-0 -6
x,t X, t lax,t-l 2ax-l,t-l

Replace (3) by (2)

(5.1) 061,62 = -rlo.
6.7) ¢ i

2
] )(1-010)

1~ %017P11P50
(6.5) and (6.9) are satisfied.

(6.10) p¢ll¢2 = 'Z‘lo

(7.6) y,. = ¢2w

ii i-1,i-1
(8.5) 02 (1,2)
e
X, t
2
(8.10) oe (21,22)
X,t
(8.13) 0%  (2.,%.)
: e 1’72
x,t
Add (10) campbell,D. & Schaeffer, D.J.

in the Chicago Sanitary and Ship Canal.
Management, 3, 283~288.
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is a moving average MA model m o= 1, r, = 2; if al = 82 =0

it " olzx,t-1‘°2zx-1,t-l‘“x,t {2.3)

is an autoregressive AR model m = 1, T, = 2.

If the t variable is omitted and if in Equation (2.1) one replaces x and x-1
on the right hand side by x-1 and x-2 except in a one gets a purely
spatial model; while if the x variable is omitted”’Sne gets the usual time
series. A simpler ARMA model is obtained if one sets ¢, = 81 = 0, or

¢, =6, = 0. The MA model, the AR model, and the ARMA hodellwith their
p?opereies will be considered.

3. PROPERTILS OF TIE MA MODEL

The autocorrelation function of the MA model, the values which €, and 6., may

have, and the corresponding AR model with an infinite set of coe}ficien s

will be given. From Voss et al. (3), the variance
2

2 2,.,2
o, = oa(1+61¢€2) (3.1)

and the correlations
2,2 2,02
001(1+81#62) = —61, 010(1461*62) = 01 2¢

2

oll(1+e1+e§) - -0,, (3.2)

all other autocorrelations are zero. Note P11 = Po1-17%01 = Po-1' P10 "P-10'
This curtoff property of the autocorrelation function aids in the identifica-
tion of an MA model m = 1, r, = 2 A corresponding cutoff property is true
for any MA model, {m,r}. Refrite (2.2) as

zx,t = (1-elnt-ezaxat)ax't (3.3)
where Bt’x,t Ay -1 Bx’x,t =2, and 1-6,B,-8,B B, is called the
generating function or characteristic polynomial of the MA model. Rewrite
(3.3) as

(1~ - -1 %)

a,,.=(1-6,8,-6,8,8) "z,  =(Lo (e +0,B 3780}z, . (3.4)

This is an infinite AR model representation of (2.2) provided |61!¢|82|<1.

since IBx|<1, IBtl<1 for convergence of (3.4). Every MA process is

stationary but for a representation as an infinite AR model, the condition
|01|+|62i<1 is necessary. Note the coefficients of z,_, , approach zero

These results may alsc be obtained by successive substitutions
From (3.2) we infer

as L,k » =,
in (2.2), or by straightforward division.

16,14 le31<1, the added restrictions apply:
’1/°1o < l/o11 + 1/0gy < 1/039 4£ 020,45 <1, or

2 .2

146,+65= =6y/00) = ©182/P10 = ~€3/Py; ¢ (3.5)

e1 = '“10/°11' 02 = -010/001. 91 = (92901)/011, {(3.6)

=Dy 2D [1-4(02 +02 )11/2
6. = 11" 711 01 "11 (3.7
2 202 40%) '
01 "11
2 2

Hence 1-4(p2 +02)) > 0, or o2 +0% < 1/4, (3.8)
y
a circle of radius 1/2. From 62 - ‘°10/801’ we conclude 10 ™ -00162. Fromi ™.
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l/p10 < 1/011 + 1/001 < -1/010 if -1 < 10 & 0 . (3.9)

Thus the only values of (°01’°10'°11) possible are those in the intersection
of (3.8) and (3.9).
In summary, given el and 62 then Po1’ P1o° and 0,y may be found from (3.2).

If a representation of (2.2) as an infinite AR model (3.4) is desired, then j
lell+|921<1 and the coefficients of this AR model are given by (3.4).

Additionally {001,010,911) satisfy (3.6), (3.7), (3.8), and (3.9).
Conversely, given Pg1+P10°°11° which define an MA process (2.2), then if

{3.4) is satisfied, all eguations (3.5), (3.6), (3.7), and (3.8) are
satisfied. Note p,, and Py Must satisfy (3.7) and consequently r,, =

"92°01' Hence, given {001,011), °10 is determined. If an arbitrary set
(90],c1°,011} are from some unknown time series in m dimensions the equations
(3.5), (3.6), (3.7), (3.8), and |81(¢(621<1 will not be satisfied. For
instance, let 6, = .2, 6, = ~.5, o% = 1.290,, 0y = -.1550, 10 = ~.0775,

[ = .3876. All equations (3.5-3.9) are satisfied. The corresponding AR
ndlel Qs a . =z, c+.2z, =52y 44082, o220 o 04252, )
+.006zx’t_3v.06zx_1't_3+.152x_2’t_3~.1252x_3’t_3+...etc. Suppose from a

simulation of this process the sample values are r = -.14, 115 ™ -.10, ryy
= .40, to determine the estimated values of the coﬁ&tants 6.,6, three

equations must be satisfied, an impossibility. Instead ite}atgons are used
in order to satisfy the (3.5) as closely as possible. The result is 61-.22.

6, = -.55, 1463462 = 1.3509, and resulting r's from (3.5) are g ~ -.163,
rio = =090, xrj; = .407.

We rewrite

=¥ = L. o=
3,6 = 5 B74,3%xei,t-3, "00 = Br oy T Eys ¥py = @

5
, 2 ) 2 3 2
Tog ™ 01 ¥yp T 283850 ¥y = Ey. gy = 81 Tpg = 3516,
L .2 2 (3.10)
Tp3 = 353870 a3 = 83 Ty T B3Thg-1r Tig < Bavy,ga1 t
" a
82%5-1,5-1" "33 ® %273-1,341
4. SIMULATION OF THE MA MODEL
Given (91,62), lell+|62|<1, simulate
2ot T 8x,e7010,e7 %281, 01 4.1

by first generating a set of random numbers (ax4i t+j)' i=0,1,2,..., r+4,j=0,
1,2,...,8+4, from a distribution u=0,c=1.This gives (r+5){s+5) values of L o

random numbers. Then from these values of a's calculate (r+5) (s+5) values of
(zx+i,t+j) with the chosen theoretical set (91,92) using (4.1). All a's not

generated as above are identically zero. Delete the first two rows, first
two columns, the last three rows and the last three columns of the Z matrix.
This produces a reduced Z matrix of rs value. Note the number five is chosen
for convenience, so an inner Z matrix may represent the process properly. In
the example 61~.2, 82--.5, and the a, t's are normally distributed with u=0,

°a'1‘ r=s~10, zx,t is given as the fi;st number in each cell of Table 1. The
a e’ the second number in each cell of Table 1 is not the 10X10 inner part
of 15X15 original Z but is determined from the 10X10 Z matrix by using

x,t x,t + el'x,t-l’ez'x-l,t-l' (4.2)




with 01-.2, 82--.5 where now &, t-1 and Ay.1,p-1 ATE taken as zero for
initial starting values. Thus in the first row a, ¢ Zx,t" In the first
column all unknown a's for x<l1 are zero. In th;s way a set of a's are built
up slightlv different from the inner 10X10 a 's obtainable from the 15X15
original % matrix. This is done since in a samplc of z, the at must be
determined in this vay (although in practice the {e P ) uould be unknown and
would be a set (61,6 } estimated from the sample LI l). In the second row

all needed a's are known as soon as the first a is detotmined, and subse-

quently for each row, since the needed a's in any cell are found by using the

z, , in that cell and the a  ,_, in the cell directly above and the a _, ,_,
’ B ’

in the cell one to the left and above using (4.2). Thig set of a's is used

in finding all further 2's for all subsequent sets {61,92). From the 10X10

2 matrix determine 'm n' 7 (the sample mean), o: (the sample variance of z,

r°1. Tio* rll' 1 2, using (3.5~3.7) iteratively as in 3. New estimates

z, . may be found using any desired (el.e ) particularly a set satxsfyxng

’

(3.5=3.7) and having a minimum prediction error variance 02 = Zz(z x t)
r

/(n=1). This is essentially.a }east squares procedure. The mxnxmum variance
procedure is to vary a set (91,62) in the plane such that 02 is a minimum.

2

The theoretical value of o is
2 2 2,2 ]
Ge = Oy {(61-61) *(62-02) }
where 81 and 8, are population values. This method is remarkably effective,

working well for autoregressive models also (3), Note i(x.t) are values
from the minimum prediction error variance set e -.208 8 --.4 3 almost

identical to the theoretical set {.2,-.5)!; whxle z(x, t) are from {.333-.418
the least sguares set most nearly satxctyan (3.5)-(3.7), which leads to a
theoretical (001,010,011} set of {-.259,-.108,.325} compared with an actual
('10"01"11) of {-.255,~.133,.299} from Zy,p+ The values of r n in Table
2 are those from z, (the notation of z(x,t) in Table 1 is used for conven-

ience.) Further f:om (5.1) in the next section given {.2,-.5}, the 95%
confidence interval for 81 is (.036,.364) and for 62 is (-.664,-.336) and

{.333,-.418} cuts these limits.
S. ESTIMATION

The variances and covariances of f§1'§z’ are approximated by use of the sampk
estimates To1¢ Fi0' Y11 inasample of n of P31'°10°°11 and the relationship

of the variance-covariance matrix of MA models which are the same as those of
AR models, From the results of Perry and Aroian (4),

532 = 5% = n"taer2 )" (1-02-02-20,0,r, ), ana

1 2 (5.1)
061152 = Xo°

These correspond to the least squares sglution of the corresponding AR model

and if the a, t are assumed to be distributed normally, these are close
approximations to the maximum likelihood estimates of (e ). (See Box and
Jenkins, (5) p. 283, for similar case, m=0.) The ltarting valuol of a . as

noted in the simulation would need to be considered for the maximum likeli-
hood solution. The method leading to (5.1) is general and applies to them
dimensional MA model, The minimum variance estimates {81. 2) and the result-

ing estimates of the correlation between 6 and 62 may be found as noted in
the next section for any set of data.

TEX T
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TABLE 1
values of Z(x,t), a(x,t), Z(x,t),, 20x,t),
tx 1 2 3 ) 5 3 7 s 3 10
Z(x,t)  -1.478 0.815 <=0.301 G.337 <1.277 0.527 0.210 -0.625 0.867 -1.668
, #(x,£)  -1.478 0.815 -0.301 0.337 -1.277 0,527 0.210 -0.625 0.867 -1.668
2ix,t); -1.478 0.815 =0.301 0.337 -1.277 0.527 0.210 -0.625 0.867 =-1.668
2(x.t)) ~1.478  0.815 -0.301 ©.337 -1.277 0,527 0.210 -0.625 0.867 -1.668
z(x,t  =1.110 -1.410 1.541 0,126 -0.681 0.245 0.132 1.506 =1.602 =-0.741
, a(x,)  -1.406 -0.508 1.073 0.343 -1.205 0.989 -0.080 1.276 -1.116 =1.508
} F(x.t). -1.098 -1.406 1,538 0.125 =-0.673 0.250 0.127 1.510 -1.605 -0.734 :
z(x,t)) -0.913 -1.397 1.514 0.106 -0.539 0.260 0.061 1.572 -1.666 ~0.590
Z(n,6]  <0.105 <1.199 =0.701 -0.649 1.620 0.425 0.148 -0.124 0,595 -0.060
, alx,t) =0.386 -0.598 -0,232 -1.116 1.228 1.175 -0.364 0.1% -0.266 0.1%
z(x,t), -0.094 -1.185 -0.706 =-0.65 1.626 0.425 0.142 -0.134 0.595 -0.040
Zix,t); 0.082 -1.016 -0.802 =-0.783 1.735 0.384 0.079 -0.286 0.639 0.232
Z(x,t)  0.850 -0.484 -1.375 =0.,298 -1.257 0.540 -0.3d43 0.767 ~2.043 =0.903 €
J o ALt 0.372 -0.411 -1.123 -0.385 -0.448 0.161 -1.003 0.984 ~2.18¢ =-0.731
1 Z(x,t), 0.453 =0.477 =1.369 -0.267 =1.25¢ 0,522 =-0.348 0.768 =~2.042 =0.903
2(x,); 0.501 -0.373 -1.295 -0.110 =1.324 0.283 =0.391 0.773 =-2.022 =~0.907
Z(x.t)  <2.643 0.460 -0.264 -1.163 -0.555 2.482 1.121 -1.062 0.911 ~-1.187 E
s 20xt)  -2.58 0.191 =0.284 -0.679 =-0.452 2.739 0.840 -0.364 =-0.013 -0.24)
| 2(x,t), =-2.645 0.461 -0.252 -1.152 =-0.549 2,484 1.128 -1.063 0.922 -1.)66
i 2(x,t); -2,692 0.484 -0.081 -1.020 -0.464 2,497 1.241 -1J11 1.121 -0.911
: Zim,8) 1,355 0.040 =0.401 <-0.B57 2.023 <~1.367 -0.648 0.602 -0.817 -1.329
¢ Rx,E) 0,842 1.362 ~0.553 -0.851 2,272 ~0.593 ~1.850 0.109 -0.639 ~1.368
%(u,t),  1.3% 0.056 -0.400 -0.850 2.031 ~1.386 <-0.674 0,599 -0.614 -1.327
z(x,t); 1.69 0.225 -0.379 -0.743 2.139 -1.694 =-0.984 0.581 -0.785 =1.295
T(x,€)  0.554 =-0.191 1.9%6 0.196 -0.643 1.234 -0.742 0.557 0.795 0.542
‘ , alx,t) 0,722 -0.340 1.144 0,303 0.037 -0.021 -0.815 1,503 0.593 0.588

z(x,t) 0.547 -0.208 1.931 0,207 -0.855 1.223 -0.723 0.569 0.779 0.557
I(X.t)z 0.442 -0.441 1.898 0,355 -1.075 1.127 -0.447 0.694 0.851 0.776

z(x,t) 0,012 2.509 =-1.481 0,012 0.692 ~0.702 0.124 =-2.361 0.689 1.718
8 alx,t) 0.157 2.080 ~1.082 -0,499 0.548 -~0.725 -0.029 -1.6%3 0.056 1.539
Z(x,t) 0.006 2.507 -1.488 0.002 0.690 ~0.702 0.131 =~-2.367 0.674 1.709
2(x,t)2 -0,084 2.495 ~1.605 =-0.122 0.662 ~0,702 0.234 =-2.494 0.487 1.591

z(x,t) 0,298 ~-1.145 2.832 " 0,688 -0,602 ~1.427 -1.601 -0.279 -1.305 =-0.124
alx,t) 0.329 -0.808 1,576 1.129 -0.243 -1.846 ~1.244 -0.596 =-0.467 0.156

° glx,t) 0.297 ~1.163 2,826 0.700 -0.603 =~-1.425 ~1.596 =~0.266 =~-1.294 ~0.137
z(x,t)2 0,277 -1.434 2.805 0.843 -0.634 ~1.376 ~1.538 =-0,057 ~1.177 =~0.333
2(x,t) -1,572 1.603 -~0.668 1,921 1.776  1.193 ~1.140 -0.279 1.135 ~1.252

10 alx,t) ~1.506 1.277 0.051 1.3%9 1.162 0.945 -0.466 0,224 1.339 -0.988

;(x,t)l -1,575 1.607 ~0.675 1,901 1.770 1.209 ~1.117 ~0.266 1.143 <~1.25%0
z(x.t)z -1.616 1,683 ~0,811 1.642 1.716 1.456 ~-0.823 ~0.098 1.246 -~1.234

MEAN OF z(x,t) = =0.0757732 VAR, OF z(x,t) = 1.29559
MEAN OF pix,t) = -0,0620963 VAR. OF a(x,t) = 1,03742
MEAN OF z(x,t); = -0.0745114 VAR. OF z(x,t); = 1.29484

The prediction error varjance of z(x,t), = .0000944463¢
For z(x,t),, 6, = .208, 6, » ~.493

MEAN OF 2(x,t), = -0.0575717 VAR. OF z(x,t), = 1.32942

The prediction error varjance of ;(x.t)z = .0245026
For z(x,t),, 8, = .333, 6, = -.418

Where ;(x,t) is the prediction with minimum error without regard to (3-5) to (3-8)
z(x.t)2 is the prediction with minimum error with grgard to (3-5) to (3-8B).
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TABLE 2
ESTIMATED CORRELATION COEFFICIENTS

Tr,n from .t
m n 0 1 2 3 4 s
<% -.02440 -.08929 .01751 .09018 -. 07126 .013%9
-4 -,00683 -.01955 -.15060 .12190 -.06967 .06822
-3 .00744 -.21941 -,09758 ~.16610 .14620 .06586
-2 -.04944 ~.02406 .09758 .02137 .03338 .008239
-1 =.13263 .15886 -.05166 .07963 -.08132 .03068
0 1.0000 -.25518 .10146 .01626 -.05956 .02659
1 -,13263 .29921 .03112 ~-.13549 .03900 -.12985
2 -,04944 .05475 .02902 .05822 -.10431 .04176
3 .00744 -.00829 -.04685 .12587 .01059 .00946
4 -.00683 -,08132 .06358 ~-.008133 .07500 ~-.04081
5 -.02440 .00370 -.06670 ~.05665 .05308 .01927
6. PROPERTIES OF THE AR MODEL
The properties of the AR model
2ot T 1%k, e-1t0xx-1,t-1" 20t 16.1)

are taken from Taneja and Aroian (6) and Perry and Aroian (4). These are:
the characteristic function,

c(Bx,Bt) = 1-(@1*02BX)Bt; (6.2)
the autocorrelation function,
m,n = *1°m,0-1*%2°m1,n-10 @ = N 7 0 (6.3
the variance,
2 2 -1
o, = °a‘1-°1°01_°2°11) H (6.4)
and the stationarity condition
log1%10,1<1; (6.5)
the Yule-Walker equations,
Po1® #1*%2°10 P11 = “1°10*%2 (6.6)
with the solution:
2 ,-1
¢ = (001-010910) (1-910) (6.7)
2 -1 ¢
4, = (011-o°1n1°) (1~c34)
Since ag > 0, then (001,010,011) are restricted by
2 2 2
pl°+p°1¢gl1-2901010011—1<0 . (6,8}

I1f (6.8) is set eqpallto zero, then for each value of ¢ (6.8) represents an
ellipse. The permissible values lie within the rcctnngig degcribed in the
ellipses. The rectangle is bounded by

“14079<0g170) <1701 2nd

'1-°10<°01‘°11‘1*°10 . (6.9)

While an AR model is invertible, it is not stationary unless condition (6.9)
is satisfied. Note that given a permissible set of 1010,911,001) then 2 and

¢., are determined by (6,7). R
2 y ) owever, 1f(¢1,¢2) are given, then (910,911,001)




are unigque and may be determined from the corresponding AM model of the AR
model. An example, the depths of the Mohawk River, discussed briefly in the
Perry and Aroian paper (4) is being expanded from three points on the river
to ten points. The results will be used to predict floods along the Mohawk.
let ¢, = .2, ¢, = -.6, °10 = ~.20871, Po1 * .32523, P11 = -.64174. The

simulation of this set of {910,001,011) is accomplished by using the ¢'s and

any set of starting values with the a's generated by any desired distribution.
The values of Pm.n for this example are given in the table for (m,n) in the

first and second'quqdrants; the results in the third quadrant are the same as
those in the first quadrant, while the results in the fourth quadrant are the

same as those in the second quadrant., Thus Om.n = p-m,-n’ pm'_n = c-m,nf .
°m,0 = Pem,0’ °0,-n = °0,n’ but °m,n ¥ L This follows from the defini-

tion of -y, t 'tz' given in section 2. A table of the correlation Pm.n for

01 = .2, ¢2 = -,6 is presented.

TABLE 3

CORRELATIONS °m.n IN AR MODEL

Ol = .2, ¢2 = -.6

] .01 .03
7 -.01 -.04 -.06
6 .01 .02 .07 .09 .07
5 -.01 .04 -,11 ~-,12 -.09 -.05
4 .01 .02 .06 .17 .17 .11 .06 .03
3 -.01 ~,03 ~,09 -.26 ~.22 =-.12 ~-.06 ~-.02 -.01
2 .04 .13 .41 .28 .13 .05 .02 .01
1 ~-.21 ~.64 -.32 -.13 «.05 -,05 -.02 =-.01
0
1

1.00 +33 211 .03 .01 n
- -.21 -.07 =-.02 -.01
-2 .04 .01

-3 ~.01

The numbers in the blank spaces are zero.

Every AR model has a cutoff property given by the partial autocorrelation.

function, ¢i in this case; oi ¥ 0 for i =1,2; oi =0, i ¥ 1,2, where ¢i is

determined by the Yule-Walker equations corresponding to AR models, r > 2.
For an m = 1 model is of order one if ¢3,o4,...,¢x, are zero as determined

by the partial coefficient of correlation, Tanejs and Aroian (6).

The approximate estimated variances and covariances of (01,02) given by

~2 ~2 -1 2 -1 2_.2

07 = 0 = n “(lery,) “{l-¢J-0¢,-2¢,4, r,.)} and

¢ oy 10 172 172 “10 (6.10)

06: ,2 =

01'02 10
are approximate maximum likelihood results, if the a t" are distributed
normally, are asymptotically unbiased, consistent, affa®minimum variance. Let

1 1y N - ..
Rz - » I = ‘rol'rll)' ¢ = (‘1102)

10 1
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where 6(31,32) is the variance-covariance matrix of (51.32). The minimum
variances of (31,32) may be found numerically by varying (31.32) until the
variance % is minimized for the particular sample.

The AR model may be given as an infinite AM model

¥
2z = L [T TP
Xt il jmo 13 X-i,te)

2 2
Vool ¥p1=yr V11%0pr Ygam0). 15726105, ¥py=0), (6.11)

Yo3™1%05-17 Yi3™®1%i,5-1*%2%i-1,5-1, ¥357%275-1,5-1 ¢

like (4.1) replacing “ij by wij' and ei by e
For @1--2, ¢2=-.6, woo-l, w01=-2, wllt-.6, w°2=.04,

.36, =.008, =.072, .216,

V12"m-24, ¥pp" Y3 Y13 va3"

w33-.216, etc.
An AR model simulation is given in Perry and Aroian (4).
7. ARMA MODELS

The results of Oprian et al. (7) are used freely in addition to some new
results mainly in the determination of values of {01,02,01.92) as related to

the values of (001,010.011.0_1,1). The results are:

2 2 6. )-8 (5= 0o m -1
of = 05116, (6,~8,)=0,(6,=8,)) (1-0,00,=8,010) "

2,2 2,2
Por = ©1%%2¢10781% %2 £1979; = 1*%20107"n1

2,2 2, 2
P11 = Y1P10*%2782% % 929,79 = $1°10%%27 1

(7.1)

2,2
10 = #1°1-1*0200179, (98119, /0, -

The second and third equations may be solved for ei°§/°: and these results
substituted in the first and fourth eguations to obtain {Ql,oz,el,ez). 1f

01-02-0, or 81-62-0, the corresponding MA or AR models are obtained. For

m,n 2 2,

°m,n = °1°m,n-1‘°2°m—1,n-1 * 7.2)
The ARMA model may be represented as an infinite moving MA model

t 7.

150 j_owijax_i,t_j, or (1.3
an infinite AR model

r r 7.4

1=0 3-0 137x-1,t-3" -0

restrictions already noted [olt+I¢2I<1 and I61|¢lezl<l, naturally restricting
the values of (901,910,011) also. The infinite MA model is given by




-1 -
= (1-015t-825x5t)(l-olBt-oszBt) ax,t

x,t 5
o (7.5)

11
(1-8,B,-6,B B, ) (igo(¢1¢@25x) Be) a, o

with Woo‘l' W01‘°1'°1' wllsoz-ez. Waz-®1p

! e -
V127791 8*201857058) e e v ¥g3™t Yo §o1-

Vi5T01Ys,5-1* %251, 5-10 Yii®t2¥ie1,8-1" {7.6)

Similarly the ARMA model as an AR model:

Too = Lo Ty ™ 8170y Myy = 878, Mgy = €y (870

n = -¢ +26

12 192 = 92(82-¢2), (7.7)

182782%50 a2
o3 " ®1"0,5-10 "ij = ®17i,3-1%f2"i-1, 510

Tii T f2Tie1,4-1 ¢

Note (3.10) and (6.11) are special cases of (7.5) and (7.6). For

. Gl = .2, 02 = -6, 01 = .2, 92 = ~.5,

; wOO =1, W11 = -.1, w12 = -.02, W22 = -,6, w13 = ~.004, (7.8)

Va3 ™ .024, b33 = -.036, etc.

The autocorrelation function must be found by using (7.5) and
2 )-1

© = (IIv, ) (EZUij ,m=n¥0 (7.9)

m,n 1jwi-m,j—n

L S

o = orry?, . (7.10)

z a““vij

Thus ci/ci = 1,01741, obtained from (7.9) and (7.10), must be used in (7.1)

to solve for {:01,010,011,01_1) = {.058,-.091,-.127,-.213) as compared to the

MA model {-.155,-.078,.389,0}, and the AR model {.33,-.21,-.64,-.07}. 1In
fact, had ¢1 = 2, mz = -_6, 61 = ,2, 62 = -.6, been chosen, then the ARMA

4

} model would have been reduced to (1-.28t+.63x8t)zx’t-(1-.2Bt+.65x8t)ax,t, or
zx,t'ax,t! Convertelx, Eadﬂa sample set of sz/sa, (t°1,r10,r11,r1_11 been
given, estimates (01,@2,91,62) could be found from (7.1) as already given by

! substituting the sample estimates for the population values. These results
{ with the exception of (7.1) and the methods of solution given there are due
) to Robert Perry in his ongoing Ph.D. thesis.

DR - S e ol M

How may the estimates of (¢1,¢2,61,62) in a sample of n be found? One method
is to choose the set (81,32,61,32) which minimizes sz, the sample estimates

of 02 as done in 4 by varying the four constants numerically. The other
methdd is to find the corresponding AR model through T2 and then apply the
method given in section 5. 1

T e el -

8. FORECASTING

Now that the models have been defined, their properties given, it is necessary
to show how these results may be used for forecasting. It should be realized
that in forecasting it is not necessary to assume the future repeats the past.
All that is needed is to assume that the errors of the past will be repeated

in the future, although the events themselves will not necessarily be

e ke TR
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formulas must not be used blindly, but must be checked carefully.

In the MA case (2.1):

G M S0 1, ot M . e BB+

2 = a -6,a -6,a
x+ll,c+22 x+ll,t+£2 1 x+21,t+£2 172 xoll 1,:#22 1, (8.11)
e = a -8,a _1-6,a _
x‘ll't‘lz x+£1.t¢12 1 x#ll,c+12 1 72 x¢11.t+12 1 (8.12)
‘{ zx,t(tl'!Z) =0
2 2 2,,.2
! cz(tl,iz) = oa(1+61*62) . (8.13)
i for il 2 2 or lz 2 2. The other cases are
! 2y, e 10/1) = =613, ¢=0r8 e 2y, e (100 = mEa, ey
| et (001) = ay oy ey (100 = a0t (8.14)
i zx't(l,l) = —E2ax't, ex,t(l,l) = ax+1,t¢1-elax+1,t
+

2 2 2 2 2 2 2 2
and oe(O,l) = Oy oe(l,O) = oa(1+el), oe(l,l) = ca(1+61) .

The more general ARMA model is changed to infinite MA model given in (7.5),
and terms as far as “10 10 carried for accuracy. The method is exactly the

same. The models may be updated as new results are obtained.

Forecasts and forecast errors are correlated. In any MA wmcdel (and by
extension any AR model or ARMA model) the forecast errors are.

ex't(o.l) = ax,t*l' ex't(llo) - ax+1,t_elax+1,t-l ’

and
- {8.15)
ey, t (101 = 8y +a17%800 e

Hence

c{ex't(o,l), ex't(l,O)) = °{‘°x.:‘°'1" e t(1,1)) =0,

X,

2 1 (8.16) X
sle, (1,00, e, ((1,1)) ==8, (1+8%) .

Correlations among other forecast errors may be found. Forecasts are also
correlated. From (8.14)

c(zx’t(o.l).zx't(l.O)) = o(zx’t(l.O).zx't(l,l)) =0,

but

-1/2

: s . 2.2
ofz, ((0,1),2, ,(1,1)) = 6, (8]+63) (8.17)

The autocorrelation function for forecasts and forecast errors may be found
in a similar manner.

It has been assumed in the foregoing that all constants 6. are exact where in

fact estimates of Oi are used, including the sample mean 1 !y g A discus-~

‘ sion of this matter is given in Box and Jenkins (5), pages 265-268. For the
i mean, an additional source of variation, the ci/n is added to the formula

for c: given in (8.10) and is important if n ig fairly small, n s 100,

! depending on the model, For the power spectra of the discussed models, see
the papers of Voss et al. (3), Taneja and Arocian (6), and Oprian et al.
| (7.
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